Please login to create an exam or a quiz.
Find the derivative of \(\displaystyle y = (\log{\left(x \right)})(2 x^{2} - 2 x + 3)(e^{x})\).
Identifying \(\displaystyle f=\log{\left(x \right)}\) and \(\displaystyle g=\left(2 x^{2} - 2 x + 3\right) e^{x}\) and using the product rule with \(\displaystyle f=\log{\left(x \right)} \implies f'=\frac{1}{x}\). This leaves g as \(\displaystyle g = \left(2 x^{2} - 2 x + 3\right) e^{x}\) which also requires the product rule. Pushing down in the new product rule \(\displaystyle f=2 x^{2} - 2 x + 3 \implies f'=4 x - 2\) and \(\displaystyle g=e^{x} \implies g'=e^{x}\). Popping up a level gives \(\displaystyle g'=(e^{x})(4 x - 2)+(2 x^{2} - 2 x + 3)(e^{x})\)Popping up again (Back to the original problem) gives \(\displaystyle f'=(\log{\left(x \right)})(\left(4 x - 2\right) e^{x} + \left(2 x^{2} - 2 x + 3\right) e^{x})+(\left(2 x^{2} - 2 x + 3\right) e^{x})(\frac{1}{x})=\left(4 x - 2\right) e^{x} \log{\left(x \right)} + \left(2 x^{2} - 2 x + 3\right) e^{x} \log{\left(x \right)} + \frac{\left(2 x^{2} - 2 x + 3\right) e^{x}}{x}\)
\begin{question}Find the derivative of $y = (\log{\left(x \right)})(2 x^{2} - 2 x + 3)(e^{x})$.
\soln{9cm}{Identifying $f=\log{\left(x \right)}$ and $g=\left(2 x^{2} - 2 x + 3\right) e^{x}$ and using the product rule with $f=\log{\left(x \right)} \implies f'=\frac{1}{x}$. This leaves g as $g = \left(2 x^{2} - 2 x + 3\right) e^{x}$ which also requires the product rule. Pushing down in the new product rule $f=2 x^{2} - 2 x + 3 \implies f'=4 x - 2$ and $g=e^{x} \implies g'=e^{x}$. Popping up a level gives $g'=(e^{x})(4 x - 2)+(2 x^{2} - 2 x + 3)(e^{x})$Popping up again (Back to the original problem) gives $f'=(\log{\left(x \right)})(\left(4 x - 2\right) e^{x} + \left(2 x^{2} - 2 x + 3\right) e^{x})+(\left(2 x^{2} - 2 x + 3\right) e^{x})(\frac{1}{x})=\left(4 x - 2\right) e^{x} \log{\left(x \right)} + \left(2 x^{2} - 2 x + 3\right) e^{x} \log{\left(x \right)} + \frac{\left(2 x^{2} - 2 x + 3\right) e^{x}}{x}$}
\end{question}
\documentclass{article}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage[margin=2cm]{geometry}
\usepackage{tcolorbox}
\newcounter{ExamNumber}
\newcounter{questioncount}
\stepcounter{questioncount}
\newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}}
\renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}}
\newif\ifShowSolution
\newcommand{\soln}[2]{%
\ifShowSolution%
\noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else%
\vspace{#1}%
\fi%
}%
\newcommand{\hideifShowSolution}[1]{%
\ifShowSolution%
%
\else%
#1%
\fi%
}%
\everymath{\displaystyle}
\ShowSolutiontrue
\begin{document}\begin{question}(10pts) The question goes here!
\soln{9cm}{The solution goes here.}
\end{question}\end{document}<p> <p>Find the derivative of <img class="equation_image" title=" \displaystyle y = (\log{\left(x \right)})(2 x^{2} - 2 x + 3)(e^{x}) " src="/equation_images/%20%5Cdisplaystyle%20y%20%3D%20%28%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%29%282%20x%5E%7B2%7D%20-%202%20x%20%2B%203%29%28e%5E%7Bx%7D%29%20" alt="LaTeX: \displaystyle y = (\log{\left(x \right)})(2 x^{2} - 2 x + 3)(e^{x}) " data-equation-content=" \displaystyle y = (\log{\left(x \right)})(2 x^{2} - 2 x + 3)(e^{x}) " /> .</p> </p><p> <p>Identifying <img class="equation_image" title=" \displaystyle f=\log{\left(x \right)} " src="/equation_images/%20%5Cdisplaystyle%20f%3D%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%20" alt="LaTeX: \displaystyle f=\log{\left(x \right)} " data-equation-content=" \displaystyle f=\log{\left(x \right)} " /> and <img class="equation_image" title=" \displaystyle g=\left(2 x^{2} - 2 x + 3\right) e^{x} " src="/equation_images/%20%5Cdisplaystyle%20g%3D%5Cleft%282%20x%5E%7B2%7D%20-%202%20x%20%2B%203%5Cright%29%20e%5E%7Bx%7D%20" alt="LaTeX: \displaystyle g=\left(2 x^{2} - 2 x + 3\right) e^{x} " data-equation-content=" \displaystyle g=\left(2 x^{2} - 2 x + 3\right) e^{x} " /> and using the product rule with <img class="equation_image" title=" \displaystyle f=\log{\left(x \right)} \implies f'=\frac{1}{x} " src="/equation_images/%20%5Cdisplaystyle%20f%3D%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%20%5Cimplies%20f%27%3D%5Cfrac%7B1%7D%7Bx%7D%20" alt="LaTeX: \displaystyle f=\log{\left(x \right)} \implies f'=\frac{1}{x} " data-equation-content=" \displaystyle f=\log{\left(x \right)} \implies f'=\frac{1}{x} " /> . This leaves g as <img class="equation_image" title=" \displaystyle g = \left(2 x^{2} - 2 x + 3\right) e^{x} " src="/equation_images/%20%5Cdisplaystyle%20g%20%3D%20%5Cleft%282%20x%5E%7B2%7D%20-%202%20x%20%2B%203%5Cright%29%20e%5E%7Bx%7D%20" alt="LaTeX: \displaystyle g = \left(2 x^{2} - 2 x + 3\right) e^{x} " data-equation-content=" \displaystyle g = \left(2 x^{2} - 2 x + 3\right) e^{x} " /> which also requires the product rule. Pushing down in the new product rule <img class="equation_image" title=" \displaystyle f=2 x^{2} - 2 x + 3 \implies f'=4 x - 2 " src="/equation_images/%20%5Cdisplaystyle%20f%3D2%20x%5E%7B2%7D%20-%202%20x%20%2B%203%20%5Cimplies%20f%27%3D4%20x%20-%202%20" alt="LaTeX: \displaystyle f=2 x^{2} - 2 x + 3 \implies f'=4 x - 2 " data-equation-content=" \displaystyle f=2 x^{2} - 2 x + 3 \implies f'=4 x - 2 " /> and <img class="equation_image" title=" \displaystyle g=e^{x} \implies g'=e^{x} " src="/equation_images/%20%5Cdisplaystyle%20g%3De%5E%7Bx%7D%20%5Cimplies%20g%27%3De%5E%7Bx%7D%20" alt="LaTeX: \displaystyle g=e^{x} \implies g'=e^{x} " data-equation-content=" \displaystyle g=e^{x} \implies g'=e^{x} " /> . Popping up a level gives <img class="equation_image" title=" \displaystyle g'=(e^{x})(4 x - 2)+(2 x^{2} - 2 x + 3)(e^{x}) " src="/equation_images/%20%5Cdisplaystyle%20g%27%3D%28e%5E%7Bx%7D%29%284%20x%20-%202%29%2B%282%20x%5E%7B2%7D%20-%202%20x%20%2B%203%29%28e%5E%7Bx%7D%29%20" alt="LaTeX: \displaystyle g'=(e^{x})(4 x - 2)+(2 x^{2} - 2 x + 3)(e^{x}) " data-equation-content=" \displaystyle g'=(e^{x})(4 x - 2)+(2 x^{2} - 2 x + 3)(e^{x}) " /> Popping up again (Back to the original problem) gives <img class="equation_image" title=" \displaystyle f'=(\log{\left(x \right)})(\left(4 x - 2\right) e^{x} + \left(2 x^{2} - 2 x + 3\right) e^{x})+(\left(2 x^{2} - 2 x + 3\right) e^{x})(\frac{1}{x})=\left(4 x - 2\right) e^{x} \log{\left(x \right)} + \left(2 x^{2} - 2 x + 3\right) e^{x} \log{\left(x \right)} + \frac{\left(2 x^{2} - 2 x + 3\right) e^{x}}{x} " src="/equation_images/%20%5Cdisplaystyle%20f%27%3D%28%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%29%28%5Cleft%284%20x%20-%202%5Cright%29%20e%5E%7Bx%7D%20%2B%20%5Cleft%282%20x%5E%7B2%7D%20-%202%20x%20%2B%203%5Cright%29%20e%5E%7Bx%7D%29%2B%28%5Cleft%282%20x%5E%7B2%7D%20-%202%20x%20%2B%203%5Cright%29%20e%5E%7Bx%7D%29%28%5Cfrac%7B1%7D%7Bx%7D%29%3D%5Cleft%284%20x%20-%202%5Cright%29%20e%5E%7Bx%7D%20%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%20%2B%20%5Cleft%282%20x%5E%7B2%7D%20-%202%20x%20%2B%203%5Cright%29%20e%5E%7Bx%7D%20%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%20%2B%20%5Cfrac%7B%5Cleft%282%20x%5E%7B2%7D%20-%202%20x%20%2B%203%5Cright%29%20e%5E%7Bx%7D%7D%7Bx%7D%20" alt="LaTeX: \displaystyle f'=(\log{\left(x \right)})(\left(4 x - 2\right) e^{x} + \left(2 x^{2} - 2 x + 3\right) e^{x})+(\left(2 x^{2} - 2 x + 3\right) e^{x})(\frac{1}{x})=\left(4 x - 2\right) e^{x} \log{\left(x \right)} + \left(2 x^{2} - 2 x + 3\right) e^{x} \log{\left(x \right)} + \frac{\left(2 x^{2} - 2 x + 3\right) e^{x}}{x} " data-equation-content=" \displaystyle f'=(\log{\left(x \right)})(\left(4 x - 2\right) e^{x} + \left(2 x^{2} - 2 x + 3\right) e^{x})+(\left(2 x^{2} - 2 x + 3\right) e^{x})(\frac{1}{x})=\left(4 x - 2\right) e^{x} \log{\left(x \right)} + \left(2 x^{2} - 2 x + 3\right) e^{x} \log{\left(x \right)} + \frac{\left(2 x^{2} - 2 x + 3\right) e^{x}}{x} " /> </p> </p>