Please login to create an exam or a quiz.
Find the derivative of \(\displaystyle y = (\log{\left(x \right)})(e^{x})(x^{2} + 5 x + 9)\).
Identifying \(\displaystyle f=\log{\left(x \right)}\) and \(\displaystyle g=\left(x^{2} + 5 x + 9\right) e^{x}\) and using the product rule with \(\displaystyle f=\log{\left(x \right)} \implies f'=\frac{1}{x}\). This leaves g as \(\displaystyle g = \left(x^{2} + 5 x + 9\right) e^{x}\) which also requires the product rule. Pushing down in the new product rule \(\displaystyle f=e^{x} \implies f'=e^{x}\) and \(\displaystyle g=x^{2} + 5 x + 9 \implies g'=2 x + 5\). Popping up a level gives \(\displaystyle g'=(x^{2} + 5 x + 9)(e^{x})+(e^{x})(2 x + 5)\)Popping up again (Back to the original problem) gives \(\displaystyle f'=(\log{\left(x \right)})(\left(2 x + 5\right) e^{x} + \left(x^{2} + 5 x + 9\right) e^{x})+(\left(x^{2} + 5 x + 9\right) e^{x})(\frac{1}{x})=\left(2 x + 5\right) e^{x} \log{\left(x \right)} + \left(x^{2} + 5 x + 9\right) e^{x} \log{\left(x \right)} + \frac{\left(x^{2} + 5 x + 9\right) e^{x}}{x}\)
\begin{question}Find the derivative of $y = (\log{\left(x \right)})(e^{x})(x^{2} + 5 x + 9)$. \soln{9cm}{Identifying $f=\log{\left(x \right)}$ and $g=\left(x^{2} + 5 x + 9\right) e^{x}$ and using the product rule with $f=\log{\left(x \right)} \implies f'=\frac{1}{x}$. This leaves g as $g = \left(x^{2} + 5 x + 9\right) e^{x}$ which also requires the product rule. Pushing down in the new product rule $f=e^{x} \implies f'=e^{x}$ and $g=x^{2} + 5 x + 9 \implies g'=2 x + 5$. Popping up a level gives $g'=(x^{2} + 5 x + 9)(e^{x})+(e^{x})(2 x + 5)$Popping up again (Back to the original problem) gives $f'=(\log{\left(x \right)})(\left(2 x + 5\right) e^{x} + \left(x^{2} + 5 x + 9\right) e^{x})+(\left(x^{2} + 5 x + 9\right) e^{x})(\frac{1}{x})=\left(2 x + 5\right) e^{x} \log{\left(x \right)} + \left(x^{2} + 5 x + 9\right) e^{x} \log{\left(x \right)} + \frac{\left(x^{2} + 5 x + 9\right) e^{x}}{x}$} \end{question}
\documentclass{article} \usepackage{tikz} \usepackage{amsmath} \usepackage[margin=2cm]{geometry} \usepackage{tcolorbox} \newcounter{ExamNumber} \newcounter{questioncount} \stepcounter{questioncount} \newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}} \renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}} \newif\ifShowSolution \newcommand{\soln}[2]{% \ifShowSolution% \noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else% \vspace{#1}% \fi% }% \newcommand{\hideifShowSolution}[1]{% \ifShowSolution% % \else% #1% \fi% }% \everymath{\displaystyle} \ShowSolutiontrue \begin{document}\begin{question}(10pts) The question goes here! \soln{9cm}{The solution goes here.} \end{question}\end{document}
<p> <p>Find the derivative of <img class="equation_image" title=" \displaystyle y = (\log{\left(x \right)})(e^{x})(x^{2} + 5 x + 9) " src="/equation_images/%20%5Cdisplaystyle%20y%20%3D%20%28%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%29%28e%5E%7Bx%7D%29%28x%5E%7B2%7D%20%2B%205%20x%20%2B%209%29%20" alt="LaTeX: \displaystyle y = (\log{\left(x \right)})(e^{x})(x^{2} + 5 x + 9) " data-equation-content=" \displaystyle y = (\log{\left(x \right)})(e^{x})(x^{2} + 5 x + 9) " /> .</p> </p>
<p> <p>Identifying <img class="equation_image" title=" \displaystyle f=\log{\left(x \right)} " src="/equation_images/%20%5Cdisplaystyle%20f%3D%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%20" alt="LaTeX: \displaystyle f=\log{\left(x \right)} " data-equation-content=" \displaystyle f=\log{\left(x \right)} " /> and <img class="equation_image" title=" \displaystyle g=\left(x^{2} + 5 x + 9\right) e^{x} " src="/equation_images/%20%5Cdisplaystyle%20g%3D%5Cleft%28x%5E%7B2%7D%20%2B%205%20x%20%2B%209%5Cright%29%20e%5E%7Bx%7D%20" alt="LaTeX: \displaystyle g=\left(x^{2} + 5 x + 9\right) e^{x} " data-equation-content=" \displaystyle g=\left(x^{2} + 5 x + 9\right) e^{x} " /> and using the product rule with <img class="equation_image" title=" \displaystyle f=\log{\left(x \right)} \implies f'=\frac{1}{x} " src="/equation_images/%20%5Cdisplaystyle%20f%3D%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%20%5Cimplies%20f%27%3D%5Cfrac%7B1%7D%7Bx%7D%20" alt="LaTeX: \displaystyle f=\log{\left(x \right)} \implies f'=\frac{1}{x} " data-equation-content=" \displaystyle f=\log{\left(x \right)} \implies f'=\frac{1}{x} " /> . This leaves g as <img class="equation_image" title=" \displaystyle g = \left(x^{2} + 5 x + 9\right) e^{x} " src="/equation_images/%20%5Cdisplaystyle%20g%20%3D%20%5Cleft%28x%5E%7B2%7D%20%2B%205%20x%20%2B%209%5Cright%29%20e%5E%7Bx%7D%20" alt="LaTeX: \displaystyle g = \left(x^{2} + 5 x + 9\right) e^{x} " data-equation-content=" \displaystyle g = \left(x^{2} + 5 x + 9\right) e^{x} " /> which also requires the product rule. Pushing down in the new product rule <img class="equation_image" title=" \displaystyle f=e^{x} \implies f'=e^{x} " src="/equation_images/%20%5Cdisplaystyle%20f%3De%5E%7Bx%7D%20%5Cimplies%20f%27%3De%5E%7Bx%7D%20" alt="LaTeX: \displaystyle f=e^{x} \implies f'=e^{x} " data-equation-content=" \displaystyle f=e^{x} \implies f'=e^{x} " /> and <img class="equation_image" title=" \displaystyle g=x^{2} + 5 x + 9 \implies g'=2 x + 5 " src="/equation_images/%20%5Cdisplaystyle%20g%3Dx%5E%7B2%7D%20%2B%205%20x%20%2B%209%20%5Cimplies%20g%27%3D2%20x%20%2B%205%20" alt="LaTeX: \displaystyle g=x^{2} + 5 x + 9 \implies g'=2 x + 5 " data-equation-content=" \displaystyle g=x^{2} + 5 x + 9 \implies g'=2 x + 5 " /> . Popping up a level gives <img class="equation_image" title=" \displaystyle g'=(x^{2} + 5 x + 9)(e^{x})+(e^{x})(2 x + 5) " src="/equation_images/%20%5Cdisplaystyle%20g%27%3D%28x%5E%7B2%7D%20%2B%205%20x%20%2B%209%29%28e%5E%7Bx%7D%29%2B%28e%5E%7Bx%7D%29%282%20x%20%2B%205%29%20" alt="LaTeX: \displaystyle g'=(x^{2} + 5 x + 9)(e^{x})+(e^{x})(2 x + 5) " data-equation-content=" \displaystyle g'=(x^{2} + 5 x + 9)(e^{x})+(e^{x})(2 x + 5) " /> Popping up again (Back to the original problem) gives <img class="equation_image" title=" \displaystyle f'=(\log{\left(x \right)})(\left(2 x + 5\right) e^{x} + \left(x^{2} + 5 x + 9\right) e^{x})+(\left(x^{2} + 5 x + 9\right) e^{x})(\frac{1}{x})=\left(2 x + 5\right) e^{x} \log{\left(x \right)} + \left(x^{2} + 5 x + 9\right) e^{x} \log{\left(x \right)} + \frac{\left(x^{2} + 5 x + 9\right) e^{x}}{x} " src="/equation_images/%20%5Cdisplaystyle%20f%27%3D%28%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%29%28%5Cleft%282%20x%20%2B%205%5Cright%29%20e%5E%7Bx%7D%20%2B%20%5Cleft%28x%5E%7B2%7D%20%2B%205%20x%20%2B%209%5Cright%29%20e%5E%7Bx%7D%29%2B%28%5Cleft%28x%5E%7B2%7D%20%2B%205%20x%20%2B%209%5Cright%29%20e%5E%7Bx%7D%29%28%5Cfrac%7B1%7D%7Bx%7D%29%3D%5Cleft%282%20x%20%2B%205%5Cright%29%20e%5E%7Bx%7D%20%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%20%2B%20%5Cleft%28x%5E%7B2%7D%20%2B%205%20x%20%2B%209%5Cright%29%20e%5E%7Bx%7D%20%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%20%2B%20%5Cfrac%7B%5Cleft%28x%5E%7B2%7D%20%2B%205%20x%20%2B%209%5Cright%29%20e%5E%7Bx%7D%7D%7Bx%7D%20" alt="LaTeX: \displaystyle f'=(\log{\left(x \right)})(\left(2 x + 5\right) e^{x} + \left(x^{2} + 5 x + 9\right) e^{x})+(\left(x^{2} + 5 x + 9\right) e^{x})(\frac{1}{x})=\left(2 x + 5\right) e^{x} \log{\left(x \right)} + \left(x^{2} + 5 x + 9\right) e^{x} \log{\left(x \right)} + \frac{\left(x^{2} + 5 x + 9\right) e^{x}}{x} " data-equation-content=" \displaystyle f'=(\log{\left(x \right)})(\left(2 x + 5\right) e^{x} + \left(x^{2} + 5 x + 9\right) e^{x})+(\left(x^{2} + 5 x + 9\right) e^{x})(\frac{1}{x})=\left(2 x + 5\right) e^{x} \log{\left(x \right)} + \left(x^{2} + 5 x + 9\right) e^{x} \log{\left(x \right)} + \frac{\left(x^{2} + 5 x + 9\right) e^{x}}{x} " /> </p> </p>