\(\text{www.the}\beta\text{etafunction.com}\)
Home
Login
Questions: Algebra BusinessCalculus
Please login to create an exam or a quiz.
Find the derivative of \(\displaystyle f(x) = \tan^{-1}{\left(7 x \right)}\).
Taking the tangent of both sides gives \(\displaystyle \tan(y) = 7 x\). Taking the implicit derivative gives \(\displaystyle \sec^2(y)y' = 7\). Solving for \(\displaystyle y'\) gives \(\displaystyle y' = \frac{7}{\sec^{2}{\left(y \right)}}\). Using the trigonometric identity \(\displaystyle \tan^2(y)+1 = \sec^2(y)\) gives \(\displaystyle y' = \frac{7}{\tan^{2}{\left(y \right)} + 1}\). Using the fact that \(\displaystyle \tan(y)= 7 x\) gives \(\displaystyle y' = \frac{7}{49 x^{2} + 1}\). Note that the formula for the derivative + the chain rule could have also been used.
\begin{question}Find the derivative of $f(x) = \tan^{-1}{\left(7 x \right)}$. \soln{9cm}{Taking the tangent of both sides gives $\tan(y) = 7 x$. Taking the implicit derivative gives $\sec^2(y)y' = 7$. Solving for $y'$ gives $y' = \frac{7}{\sec^{2}{\left(y \right)}}$. Using the trigonometric identity $\tan^2(y)+1 = \sec^2(y)$ gives $y' = \frac{7}{\tan^{2}{\left(y \right)} + 1}$. Using the fact that $\tan(y)= 7 x$ gives $y' = \frac{7}{49 x^{2} + 1}$. Note that the formula for the derivative + the chain rule could have also been used.} \end{question}
\documentclass{article} \usepackage{tikz} \usepackage{amsmath} \usepackage[margin=2cm]{geometry} \usepackage{tcolorbox} \newcounter{ExamNumber} \newcounter{questioncount} \stepcounter{questioncount} \newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}} \renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}} \newif\ifShowSolution \newcommand{\soln}[2]{% \ifShowSolution% \noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else% \vspace{#1}% \fi% }% \newcommand{\hideifShowSolution}[1]{% \ifShowSolution% % \else% #1% \fi% }% \everymath{\displaystyle} \ShowSolutiontrue \begin{document}\begin{question}(10pts) The question goes here! \soln{9cm}{The solution goes here.} \end{question}\end{document}
<p> <p>Find the derivative of <img class="equation_image" title=" \displaystyle f(x) = \tan^{-1}{\left(7 x \right)} " src="/equation_images/%20%5Cdisplaystyle%20f%28x%29%20%3D%20%5Ctan%5E%7B-1%7D%7B%5Cleft%287%20x%20%5Cright%29%7D%20" alt="LaTeX: \displaystyle f(x) = \tan^{-1}{\left(7 x \right)} " data-equation-content=" \displaystyle f(x) = \tan^{-1}{\left(7 x \right)} " /> . </p> </p>
<p> <p>Taking the tangent of both sides gives <img class="equation_image" title=" \displaystyle \tan(y) = 7 x " src="/equation_images/%20%5Cdisplaystyle%20%5Ctan%28y%29%20%3D%207%20x%20" alt="LaTeX: \displaystyle \tan(y) = 7 x " data-equation-content=" \displaystyle \tan(y) = 7 x " /> . Taking the implicit derivative gives <img class="equation_image" title=" \displaystyle \sec^2(y)y' = 7 " src="/equation_images/%20%5Cdisplaystyle%20%5Csec%5E2%28y%29y%27%20%3D%207%20" alt="LaTeX: \displaystyle \sec^2(y)y' = 7 " data-equation-content=" \displaystyle \sec^2(y)y' = 7 " /> . Solving for <img class="equation_image" title=" \displaystyle y' " src="/equation_images/%20%5Cdisplaystyle%20y%27%20" alt="LaTeX: \displaystyle y' " data-equation-content=" \displaystyle y' " /> gives <img class="equation_image" title=" \displaystyle y' = \frac{7}{\sec^{2}{\left(y \right)}} " src="/equation_images/%20%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B7%7D%7B%5Csec%5E%7B2%7D%7B%5Cleft%28y%20%5Cright%29%7D%7D%20" alt="LaTeX: \displaystyle y' = \frac{7}{\sec^{2}{\left(y \right)}} " data-equation-content=" \displaystyle y' = \frac{7}{\sec^{2}{\left(y \right)}} " /> . Using the trigonometric identity <img class="equation_image" title=" \displaystyle \tan^2(y)+1 = \sec^2(y) " src="/equation_images/%20%5Cdisplaystyle%20%5Ctan%5E2%28y%29%2B1%20%3D%20%5Csec%5E2%28y%29%20" alt="LaTeX: \displaystyle \tan^2(y)+1 = \sec^2(y) " data-equation-content=" \displaystyle \tan^2(y)+1 = \sec^2(y) " /> gives <img class="equation_image" title=" \displaystyle y' = \frac{7}{\tan^{2}{\left(y \right)} + 1} " src="/equation_images/%20%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B7%7D%7B%5Ctan%5E%7B2%7D%7B%5Cleft%28y%20%5Cright%29%7D%20%2B%201%7D%20" alt="LaTeX: \displaystyle y' = \frac{7}{\tan^{2}{\left(y \right)} + 1} " data-equation-content=" \displaystyle y' = \frac{7}{\tan^{2}{\left(y \right)} + 1} " /> . Using the fact that <img class="equation_image" title=" \displaystyle \tan(y)= 7 x " src="/equation_images/%20%5Cdisplaystyle%20%5Ctan%28y%29%3D%207%20x%20" alt="LaTeX: \displaystyle \tan(y)= 7 x " data-equation-content=" \displaystyle \tan(y)= 7 x " /> gives <img class="equation_image" title=" \displaystyle y' = \frac{7}{49 x^{2} + 1} " src="/equation_images/%20%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B7%7D%7B49%20x%5E%7B2%7D%20%2B%201%7D%20" alt="LaTeX: \displaystyle y' = \frac{7}{49 x^{2} + 1} " data-equation-content=" \displaystyle y' = \frac{7}{49 x^{2} + 1} " /> . Note that the formula for the derivative + the chain rule could have also been used.</p> </p>