\(\text{www.the}\beta\text{etafunction.com}\)
Home
Login
Questions: Algebra BusinessCalculus
Please login to create an exam or a quiz.
Find the derivative of \(\displaystyle y=\tan{\left(x^{2} + 11 x - 13 \right)}\).
The outer function is \(\displaystyle f(u) = \tan{\left(u \right)}\) and the inner function \(\displaystyle u = x^{2} + 11 x - 13\). The chain rule gives \(\displaystyle y'= \frac{df}{du}\frac{du}{dx}\). \(\displaystyle y' = \tan^{2}{\left(u \right)} + 1(2 x + 11) = \left(2 x + 11\right) \left(\tan^{2}{\left(x^{2} + 11 x - 13 \right)} + 1\right)\).
\begin{question}Find the derivative of $y=\tan{\left(x^{2} + 11 x - 13 \right)}$. \soln{9cm}{The outer function is $f(u) = \tan{\left(u \right)}$ and the inner function $u = x^{2} + 11 x - 13$. The chain rule gives $y'= \frac{df}{du}\frac{du}{dx}$. $y' = \tan^{2}{\left(u \right)} + 1(2 x + 11) = \left(2 x + 11\right) \left(\tan^{2}{\left(x^{2} + 11 x - 13 \right)} + 1\right)$. } \end{question}
\documentclass{article} \usepackage{tikz} \usepackage{amsmath} \usepackage[margin=2cm]{geometry} \usepackage{tcolorbox} \newcounter{ExamNumber} \newcounter{questioncount} \stepcounter{questioncount} \newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}} \renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}} \newif\ifShowSolution \newcommand{\soln}[2]{% \ifShowSolution% \noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else% \vspace{#1}% \fi% }% \newcommand{\hideifShowSolution}[1]{% \ifShowSolution% % \else% #1% \fi% }% \everymath{\displaystyle} \ShowSolutiontrue \begin{document}\begin{question}(10pts) The question goes here! \soln{9cm}{The solution goes here.} \end{question}\end{document}
<p> <p>Find the derivative of <img class="equation_image" title=" \displaystyle y=\tan{\left(x^{2} + 11 x - 13 \right)} " src="/equation_images/%20%5Cdisplaystyle%20y%3D%5Ctan%7B%5Cleft%28x%5E%7B2%7D%20%2B%2011%20x%20-%2013%20%5Cright%29%7D%20" alt="LaTeX: \displaystyle y=\tan{\left(x^{2} + 11 x - 13 \right)} " data-equation-content=" \displaystyle y=\tan{\left(x^{2} + 11 x - 13 \right)} " /> . </p> </p>
<p> <p>The outer function is <img class="equation_image" title=" \displaystyle f(u) = \tan{\left(u \right)} " src="/equation_images/%20%5Cdisplaystyle%20f%28u%29%20%3D%20%5Ctan%7B%5Cleft%28u%20%5Cright%29%7D%20" alt="LaTeX: \displaystyle f(u) = \tan{\left(u \right)} " data-equation-content=" \displaystyle f(u) = \tan{\left(u \right)} " /> and the inner function <img class="equation_image" title=" \displaystyle u = x^{2} + 11 x - 13 " src="/equation_images/%20%5Cdisplaystyle%20u%20%3D%20x%5E%7B2%7D%20%2B%2011%20x%20-%2013%20" alt="LaTeX: \displaystyle u = x^{2} + 11 x - 13 " data-equation-content=" \displaystyle u = x^{2} + 11 x - 13 " /> . The chain rule gives <img class="equation_image" title=" \displaystyle y'= \frac{df}{du}\frac{du}{dx} " src="/equation_images/%20%5Cdisplaystyle%20y%27%3D%20%5Cfrac%7Bdf%7D%7Bdu%7D%5Cfrac%7Bdu%7D%7Bdx%7D%20" alt="LaTeX: \displaystyle y'= \frac{df}{du}\frac{du}{dx} " data-equation-content=" \displaystyle y'= \frac{df}{du}\frac{du}{dx} " /> . <img class="equation_image" title=" \displaystyle y' = \tan^{2}{\left(u \right)} + 1(2 x + 11) = \left(2 x + 11\right) \left(\tan^{2}{\left(x^{2} + 11 x - 13 \right)} + 1\right) " src="/equation_images/%20%5Cdisplaystyle%20y%27%20%3D%20%5Ctan%5E%7B2%7D%7B%5Cleft%28u%20%5Cright%29%7D%20%2B%201%282%20x%20%2B%2011%29%20%3D%20%5Cleft%282%20x%20%2B%2011%5Cright%29%20%5Cleft%28%5Ctan%5E%7B2%7D%7B%5Cleft%28x%5E%7B2%7D%20%2B%2011%20x%20-%2013%20%5Cright%29%7D%20%2B%201%5Cright%29%20" alt="LaTeX: \displaystyle y' = \tan^{2}{\left(u \right)} + 1(2 x + 11) = \left(2 x + 11\right) \left(\tan^{2}{\left(x^{2} + 11 x - 13 \right)} + 1\right) " data-equation-content=" \displaystyle y' = \tan^{2}{\left(u \right)} + 1(2 x + 11) = \left(2 x + 11\right) \left(\tan^{2}{\left(x^{2} + 11 x - 13 \right)} + 1\right) " /> . </p> </p>