\(\text{www.the}\beta\text{etafunction.com}\)
Home
Login
Questions: Algebra BusinessCalculus

Please login to create an exam or a quiz.

Calculus
Applications of Derivatives
New Random

Use Newton's method to find the first 5 approximations of the solution to the equation \(\displaystyle \cos{\left(x \right)}= \frac{823 x^{3}}{1000} - 2\) using \(\displaystyle x_0=1\).


Using the formula for Newton's method gives \begin{equation*}x_{n+1} = x_{n} - \frac{- \frac{823 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 2}{- \frac{2469 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}} \end{equation*} Using \(\displaystyle x_0 = 1\) and \(\displaystyle n = 0,1,2,3,\) and \(\displaystyle 4\) gives: \begin{equation*}x_{1} = (1.0000000000) - \frac{- \frac{823 (1.0000000000)^{3}}{1000} + \cos{\left((1.0000000000) \right)} + 2}{- \frac{2469 (1.0000000000)^{2}}{1000} - \sin{\left((1.0000000000) \right)}} = 1.5187486354\end{equation*} \begin{equation*}x_{2} = (1.5187486354) - \frac{- \frac{823 (1.5187486354)^{3}}{1000} + \cos{\left((1.5187486354) \right)} + 2}{- \frac{2469 (1.5187486354)^{2}}{1000} - \sin{\left((1.5187486354) \right)}} = 1.3945916674\end{equation*} \begin{equation*}x_{3} = (1.3945916674) - \frac{- \frac{823 (1.3945916674)^{3}}{1000} + \cos{\left((1.3945916674) \right)} + 2}{- \frac{2469 (1.3945916674)^{2}}{1000} - \sin{\left((1.3945916674) \right)}} = 1.3847502985\end{equation*} \begin{equation*}x_{4} = (1.3847502985) - \frac{- \frac{823 (1.3847502985)^{3}}{1000} + \cos{\left((1.3847502985) \right)} + 2}{- \frac{2469 (1.3847502985)^{2}}{1000} - \sin{\left((1.3847502985) \right)}} = 1.3846905923\end{equation*} \begin{equation*}x_{5} = (1.3846905923) - \frac{- \frac{823 (1.3846905923)^{3}}{1000} + \cos{\left((1.3846905923) \right)} + 2}{- \frac{2469 (1.3846905923)^{2}}{1000} - \sin{\left((1.3846905923) \right)}} = 1.3846905901\end{equation*}

Download \(\LaTeX\)

\begin{question}Use Newton's method to find the first 5 approximations of the solution to the equation $\cos{\left(x \right)}= \frac{823 x^{3}}{1000} - 2$ using $x_0=1$. 
    \soln{9cm}{Using the formula for Newton's method gives
\begin{equation*}x_{n+1} =  x_{n} - \frac{- \frac{823 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 2}{- \frac{2469 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}  \end{equation*}
Using $x_0 = 1$ and $n = 0,1,2,3,$ and $4$ gives:
\begin{equation*}x_{1} =  (1.0000000000) - \frac{- \frac{823 (1.0000000000)^{3}}{1000} + \cos{\left((1.0000000000) \right)} + 2}{- \frac{2469 (1.0000000000)^{2}}{1000} - \sin{\left((1.0000000000) \right)}} = 1.5187486354\end{equation*}
\begin{equation*}x_{2} =  (1.5187486354) - \frac{- \frac{823 (1.5187486354)^{3}}{1000} + \cos{\left((1.5187486354) \right)} + 2}{- \frac{2469 (1.5187486354)^{2}}{1000} - \sin{\left((1.5187486354) \right)}} = 1.3945916674\end{equation*}
\begin{equation*}x_{3} =  (1.3945916674) - \frac{- \frac{823 (1.3945916674)^{3}}{1000} + \cos{\left((1.3945916674) \right)} + 2}{- \frac{2469 (1.3945916674)^{2}}{1000} - \sin{\left((1.3945916674) \right)}} = 1.3847502985\end{equation*}
\begin{equation*}x_{4} =  (1.3847502985) - \frac{- \frac{823 (1.3847502985)^{3}}{1000} + \cos{\left((1.3847502985) \right)} + 2}{- \frac{2469 (1.3847502985)^{2}}{1000} - \sin{\left((1.3847502985) \right)}} = 1.3846905923\end{equation*}
\begin{equation*}x_{5} =  (1.3846905923) - \frac{- \frac{823 (1.3846905923)^{3}}{1000} + \cos{\left((1.3846905923) \right)} + 2}{- \frac{2469 (1.3846905923)^{2}}{1000} - \sin{\left((1.3846905923) \right)}} = 1.3846905901\end{equation*}
}

\end{question}

Download Question and Solution Environment\(\LaTeX\)
\documentclass{article}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage[margin=2cm]{geometry}
\usepackage{tcolorbox}

\newcounter{ExamNumber}
\newcounter{questioncount}
\stepcounter{questioncount}

\newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}}
\renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}}

\newif\ifShowSolution
\newcommand{\soln}[2]{%
\ifShowSolution%
\noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else%
\vspace{#1}%
\fi%
}%
\newcommand{\hideifShowSolution}[1]{%
\ifShowSolution%
%
\else%
#1%
\fi%
}%
\everymath{\displaystyle}
\ShowSolutiontrue

\begin{document}\begin{question}(10pts) The question goes here!
    \soln{9cm}{The solution goes here.}

\end{question}\end{document}
HTML for Canvas
<p> <p>Use Newton's method to find the first 5 approximations of the solution to the equation  <img class="equation_image" title=" \displaystyle \cos{\left(x \right)}= \frac{823 x^{3}}{1000} - 2 " src="/equation_images/%20%5Cdisplaystyle%20%5Ccos%7B%5Cleft%28x%20%5Cright%29%7D%3D%20%5Cfrac%7B823%20x%5E%7B3%7D%7D%7B1000%7D%20-%202%20" alt="LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{823 x^{3}}{1000} - 2 " data-equation-content=" \displaystyle \cos{\left(x \right)}= \frac{823 x^{3}}{1000} - 2 " />  using  <img class="equation_image" title=" \displaystyle x_0=1 " src="/equation_images/%20%5Cdisplaystyle%20x_0%3D1%20" alt="LaTeX:  \displaystyle x_0=1 " data-equation-content=" \displaystyle x_0=1 " /> . </p> </p>
HTML for Canvas
<p> <p>Using the formula for Newton's method gives
 <img class="equation_image" title=" x_{n+1} =  x_{n} - \frac{- \frac{823 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 2}{- \frac{2469 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   " src="/equation_images/%20x_%7Bn%2B1%7D%20%3D%20%20x_%7Bn%7D%20-%20%5Cfrac%7B-%20%5Cfrac%7B823%20x_%7Bn%7D%5E%7B3%7D%7D%7B1000%7D%20%2B%20%5Ccos%7B%5Cleft%28x_%7Bn%7D%20%5Cright%29%7D%20%2B%202%7D%7B-%20%5Cfrac%7B2469%20x_%7Bn%7D%5E%7B2%7D%7D%7B1000%7D%20-%20%5Csin%7B%5Cleft%28x_%7Bn%7D%20%5Cright%29%7D%7D%20%20%20" alt="LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{823 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 2}{- \frac{2469 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   " data-equation-content=" x_{n+1} =  x_{n} - \frac{- \frac{823 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 2}{- \frac{2469 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   " /> 
Using  <img class="equation_image" title=" \displaystyle x_0 = 1 " src="/equation_images/%20%5Cdisplaystyle%20x_0%20%3D%201%20" alt="LaTeX:  \displaystyle x_0 = 1 " data-equation-content=" \displaystyle x_0 = 1 " />  and  <img class="equation_image" title=" \displaystyle n = 0,1,2,3, " src="/equation_images/%20%5Cdisplaystyle%20n%20%3D%200%2C1%2C2%2C3%2C%20" alt="LaTeX:  \displaystyle n = 0,1,2,3, " data-equation-content=" \displaystyle n = 0,1,2,3, " />  and  <img class="equation_image" title=" \displaystyle 4 " src="/equation_images/%20%5Cdisplaystyle%204%20" alt="LaTeX:  \displaystyle 4 " data-equation-content=" \displaystyle 4 " />  gives:
 <img class="equation_image" title=" x_{1} =  (1.0000000000) - \frac{- \frac{823 (1.0000000000)^{3}}{1000} + \cos{\left((1.0000000000) \right)} + 2}{- \frac{2469 (1.0000000000)^{2}}{1000} - \sin{\left((1.0000000000) \right)}} = 1.5187486354 " src="/equation_images/%20x_%7B1%7D%20%3D%20%20%281.0000000000%29%20-%20%5Cfrac%7B-%20%5Cfrac%7B823%20%281.0000000000%29%5E%7B3%7D%7D%7B1000%7D%20%2B%20%5Ccos%7B%5Cleft%28%281.0000000000%29%20%5Cright%29%7D%20%2B%202%7D%7B-%20%5Cfrac%7B2469%20%281.0000000000%29%5E%7B2%7D%7D%7B1000%7D%20-%20%5Csin%7B%5Cleft%28%281.0000000000%29%20%5Cright%29%7D%7D%20%3D%201.5187486354%20" alt="LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{823 (1.0000000000)^{3}}{1000} + \cos{\left((1.0000000000) \right)} + 2}{- \frac{2469 (1.0000000000)^{2}}{1000} - \sin{\left((1.0000000000) \right)}} = 1.5187486354 " data-equation-content=" x_{1} =  (1.0000000000) - \frac{- \frac{823 (1.0000000000)^{3}}{1000} + \cos{\left((1.0000000000) \right)} + 2}{- \frac{2469 (1.0000000000)^{2}}{1000} - \sin{\left((1.0000000000) \right)}} = 1.5187486354 " /> 
 <img class="equation_image" title=" x_{2} =  (1.5187486354) - \frac{- \frac{823 (1.5187486354)^{3}}{1000} + \cos{\left((1.5187486354) \right)} + 2}{- \frac{2469 (1.5187486354)^{2}}{1000} - \sin{\left((1.5187486354) \right)}} = 1.3945916674 " src="/equation_images/%20x_%7B2%7D%20%3D%20%20%281.5187486354%29%20-%20%5Cfrac%7B-%20%5Cfrac%7B823%20%281.5187486354%29%5E%7B3%7D%7D%7B1000%7D%20%2B%20%5Ccos%7B%5Cleft%28%281.5187486354%29%20%5Cright%29%7D%20%2B%202%7D%7B-%20%5Cfrac%7B2469%20%281.5187486354%29%5E%7B2%7D%7D%7B1000%7D%20-%20%5Csin%7B%5Cleft%28%281.5187486354%29%20%5Cright%29%7D%7D%20%3D%201.3945916674%20" alt="LaTeX:  x_{2} =  (1.5187486354) - \frac{- \frac{823 (1.5187486354)^{3}}{1000} + \cos{\left((1.5187486354) \right)} + 2}{- \frac{2469 (1.5187486354)^{2}}{1000} - \sin{\left((1.5187486354) \right)}} = 1.3945916674 " data-equation-content=" x_{2} =  (1.5187486354) - \frac{- \frac{823 (1.5187486354)^{3}}{1000} + \cos{\left((1.5187486354) \right)} + 2}{- \frac{2469 (1.5187486354)^{2}}{1000} - \sin{\left((1.5187486354) \right)}} = 1.3945916674 " /> 
 <img class="equation_image" title=" x_{3} =  (1.3945916674) - \frac{- \frac{823 (1.3945916674)^{3}}{1000} + \cos{\left((1.3945916674) \right)} + 2}{- \frac{2469 (1.3945916674)^{2}}{1000} - \sin{\left((1.3945916674) \right)}} = 1.3847502985 " src="/equation_images/%20x_%7B3%7D%20%3D%20%20%281.3945916674%29%20-%20%5Cfrac%7B-%20%5Cfrac%7B823%20%281.3945916674%29%5E%7B3%7D%7D%7B1000%7D%20%2B%20%5Ccos%7B%5Cleft%28%281.3945916674%29%20%5Cright%29%7D%20%2B%202%7D%7B-%20%5Cfrac%7B2469%20%281.3945916674%29%5E%7B2%7D%7D%7B1000%7D%20-%20%5Csin%7B%5Cleft%28%281.3945916674%29%20%5Cright%29%7D%7D%20%3D%201.3847502985%20" alt="LaTeX:  x_{3} =  (1.3945916674) - \frac{- \frac{823 (1.3945916674)^{3}}{1000} + \cos{\left((1.3945916674) \right)} + 2}{- \frac{2469 (1.3945916674)^{2}}{1000} - \sin{\left((1.3945916674) \right)}} = 1.3847502985 " data-equation-content=" x_{3} =  (1.3945916674) - \frac{- \frac{823 (1.3945916674)^{3}}{1000} + \cos{\left((1.3945916674) \right)} + 2}{- \frac{2469 (1.3945916674)^{2}}{1000} - \sin{\left((1.3945916674) \right)}} = 1.3847502985 " /> 
 <img class="equation_image" title=" x_{4} =  (1.3847502985) - \frac{- \frac{823 (1.3847502985)^{3}}{1000} + \cos{\left((1.3847502985) \right)} + 2}{- \frac{2469 (1.3847502985)^{2}}{1000} - \sin{\left((1.3847502985) \right)}} = 1.3846905923 " src="/equation_images/%20x_%7B4%7D%20%3D%20%20%281.3847502985%29%20-%20%5Cfrac%7B-%20%5Cfrac%7B823%20%281.3847502985%29%5E%7B3%7D%7D%7B1000%7D%20%2B%20%5Ccos%7B%5Cleft%28%281.3847502985%29%20%5Cright%29%7D%20%2B%202%7D%7B-%20%5Cfrac%7B2469%20%281.3847502985%29%5E%7B2%7D%7D%7B1000%7D%20-%20%5Csin%7B%5Cleft%28%281.3847502985%29%20%5Cright%29%7D%7D%20%3D%201.3846905923%20" alt="LaTeX:  x_{4} =  (1.3847502985) - \frac{- \frac{823 (1.3847502985)^{3}}{1000} + \cos{\left((1.3847502985) \right)} + 2}{- \frac{2469 (1.3847502985)^{2}}{1000} - \sin{\left((1.3847502985) \right)}} = 1.3846905923 " data-equation-content=" x_{4} =  (1.3847502985) - \frac{- \frac{823 (1.3847502985)^{3}}{1000} + \cos{\left((1.3847502985) \right)} + 2}{- \frac{2469 (1.3847502985)^{2}}{1000} - \sin{\left((1.3847502985) \right)}} = 1.3846905923 " /> 
 <img class="equation_image" title=" x_{5} =  (1.3846905923) - \frac{- \frac{823 (1.3846905923)^{3}}{1000} + \cos{\left((1.3846905923) \right)} + 2}{- \frac{2469 (1.3846905923)^{2}}{1000} - \sin{\left((1.3846905923) \right)}} = 1.3846905901 " src="/equation_images/%20x_%7B5%7D%20%3D%20%20%281.3846905923%29%20-%20%5Cfrac%7B-%20%5Cfrac%7B823%20%281.3846905923%29%5E%7B3%7D%7D%7B1000%7D%20%2B%20%5Ccos%7B%5Cleft%28%281.3846905923%29%20%5Cright%29%7D%20%2B%202%7D%7B-%20%5Cfrac%7B2469%20%281.3846905923%29%5E%7B2%7D%7D%7B1000%7D%20-%20%5Csin%7B%5Cleft%28%281.3846905923%29%20%5Cright%29%7D%7D%20%3D%201.3846905901%20" alt="LaTeX:  x_{5} =  (1.3846905923) - \frac{- \frac{823 (1.3846905923)^{3}}{1000} + \cos{\left((1.3846905923) \right)} + 2}{- \frac{2469 (1.3846905923)^{2}}{1000} - \sin{\left((1.3846905923) \right)}} = 1.3846905901 " data-equation-content=" x_{5} =  (1.3846905923) - \frac{- \frac{823 (1.3846905923)^{3}}{1000} + \cos{\left((1.3846905923) \right)} + 2}{- \frac{2469 (1.3846905923)^{2}}{1000} - \sin{\left((1.3846905923) \right)}} = 1.3846905901 " /> 
</p> </p>