Please login to create an exam or a quiz.
A circular cylinder needs to hold a volume of 1.5 square feet. Find the dimensions that minimize the amount of material needed, that is, minimize the surface area.
The objective is to minimize the surface area. Drawing a diagram and decomposing the surface into two circles and a rectangle gives: The area of each circle is \(\displaystyle A_c = \pi r^2\) and the area of the rectangle is \(\displaystyle A_r = 2\pi r h\). The function to be minimized is \(\displaystyle f = 2\pi r^2+2\pi r h\). The constraint on the volume can be used to eliminate \(\displaystyle h\) from the function \(\displaystyle f\). Solving \(\displaystyle 1.5 = \pi r^2 h\) for \(\displaystyle h\) gives \(\displaystyle h = \frac{1.5}{\pi r^{2}}\)Substituting \(\displaystyle h\) into \(\displaystyle f\) gives \(\displaystyle f = 2\pi r^2+2\pi r \left( \frac{1.5}{\pi r^2}\right) = 2\pi r^2 + \frac{3.0}{r}\). Taking the derivative gives \(\displaystyle f'(r) = 4 \pi r - \frac{3.0}{r^{2}}\). Clearing the fractions gives \(\displaystyle 3.0=4 \pi r^{3} \iff r^3=0.75 \iff r = \frac{\sqrt[3]{0.75}}{\sqrt[3]{\pi}}\)Substituing back into the equation for \(\displaystyle h\) gives \(\displaystyle h = \sqrt[3]{\frac{6.0}{\pi}}\)
\begin{question}A circular cylinder needs to hold a volume of 1.5 square feet. Find the dimensions that minimize the amount of material needed, that is, minimize the surface area. \soln{18cm}{The objective is to minimize the surface area. Drawing a diagram and decomposing the surface into two circles and a rectangle gives: \begin{center} \begin{tikzpicture} \draw(0, 0) -- (0, 3); \draw(2, 0) -- (2, 3); \draw[dashed, yscale=.25] (0, 0) arc (180:0:1); \draw[yscale=.25] (0, 0) arc (180:360:1); \draw[yscale=.25] (2, 12) arc (0:360:1); \draw[latex-latex] (-0.2, 0) -- (-0.2, 3) node[midway, left]{$h$}; \draw[latex-latex] (0, 0) -- (1, 0) node[midway, yshift=-.35cm]{$r$}; \draw (4,2.5) circle (28pt); \draw (4,0.5) circle (28pt); \draw(7, 0) rectangle (13, 3); \draw[latex-latex] (7, -0.2) -- (13, -0.2) node[midway, yshift=-.35cm]{$2\pi r$}; \draw[latex-latex] (6.8, 0) -- (6.8, 3) node[midway, left]{$h$}; \draw[latex-latex] (4, 2.5) -- (5, 2.5) node[midway, yshift=-.35cm]{$r$}; \draw[latex-latex] (4, 0.5) -- (5, 0.5) node[midway, yshift=-.35cm]{$r$}; \end{tikzpicture} \end{center} The area of each circle is $A_c = \pi r^2$ and the area of the rectangle is $A_r = 2\pi r h$. The function to be minimized is $f = 2\pi r^2+2\pi r h$. The constraint on the volume can be used to eliminate $h$ from the function $f$. Solving $1.5 = \pi r^2 h$ for $h$ gives $h = \frac{1.5}{\pi r^{2}}$Substituting $h$ into $f$ gives $f = 2\pi r^2+2\pi r \left( \frac{1.5}{\pi r^2}\right) = 2\pi r^2 + \frac{3.0}{r}$. Taking the derivative gives $f'(r) = 4 \pi r - \frac{3.0}{r^{2}}$. Clearing the fractions gives $3.0=4 \pi r^{3} \iff r^3=0.75 \iff r = \frac{\sqrt[3]{0.75}}{\sqrt[3]{\pi}}$Substituing back into the equation for $h$ gives $h = \sqrt[3]{\frac{6.0}{\pi}}$} \end{question}
\documentclass{article} \usepackage{tikz} \usepackage{amsmath} \usepackage[margin=2cm]{geometry} \usepackage{tcolorbox} \newcounter{ExamNumber} \newcounter{questioncount} \stepcounter{questioncount} \newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}} \renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}} \newif\ifShowSolution \newcommand{\soln}[2]{% \ifShowSolution% \noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else% \vspace{#1}% \fi% }% \newcommand{\hideifShowSolution}[1]{% \ifShowSolution% % \else% #1% \fi% }% \everymath{\displaystyle} \ShowSolutiontrue \begin{document}\begin{question}(10pts) The question goes here! \soln{9cm}{The solution goes here.} \end{question}\end{document}
<p> <p>A circular cylinder needs to hold a volume of 1.5 square feet. Find the dimensions that minimize the amount of material needed, that is, minimize the surface area. </p> </p>
<p> <p>The objective is to minimize the surface area. Drawing a diagram and decomposing the surface into two circles and a rectangle gives:<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="612pt" height="792pt" viewBox="0 0 612 792" version="1.1">
<g id="surface1">
</g>
</svg>
The area of each circle is <img class="equation_image" title=" \displaystyle A_c = \pi r^2 " src="/equation_images/%20%5Cdisplaystyle%20A_c%20%3D%20%5Cpi%20r%5E2%20" alt="LaTeX: \displaystyle A_c = \pi r^2 " data-equation-content=" \displaystyle A_c = \pi r^2 " /> and the area of the rectangle is <img class="equation_image" title=" \displaystyle A_r = 2\pi r h " src="/equation_images/%20%5Cdisplaystyle%20A_r%20%3D%202%5Cpi%20r%20h%20" alt="LaTeX: \displaystyle A_r = 2\pi r h " data-equation-content=" \displaystyle A_r = 2\pi r h " /> . The function to be minimized is <img class="equation_image" title=" \displaystyle f = 2\pi r^2+2\pi r h " src="/equation_images/%20%5Cdisplaystyle%20f%20%3D%202%5Cpi%20r%5E2%2B2%5Cpi%20r%20h%20" alt="LaTeX: \displaystyle f = 2\pi r^2+2\pi r h " data-equation-content=" \displaystyle f = 2\pi r^2+2\pi r h " /> . The constraint on the volume can be used to eliminate <img class="equation_image" title=" \displaystyle h " src="/equation_images/%20%5Cdisplaystyle%20h%20" alt="LaTeX: \displaystyle h " data-equation-content=" \displaystyle h " /> from the function <img class="equation_image" title=" \displaystyle f " src="/equation_images/%20%5Cdisplaystyle%20f%20" alt="LaTeX: \displaystyle f " data-equation-content=" \displaystyle f " /> . Solving <img class="equation_image" title=" \displaystyle 1.5 = \pi r^2 h " src="/equation_images/%20%5Cdisplaystyle%201.5%20%3D%20%5Cpi%20r%5E2%20h%20" alt="LaTeX: \displaystyle 1.5 = \pi r^2 h " data-equation-content=" \displaystyle 1.5 = \pi r^2 h " /> for <img class="equation_image" title=" \displaystyle h " src="/equation_images/%20%5Cdisplaystyle%20h%20" alt="LaTeX: \displaystyle h " data-equation-content=" \displaystyle h " /> gives <img class="equation_image" title=" \displaystyle h = \frac{1.5}{\pi r^{2}} " src="/equation_images/%20%5Cdisplaystyle%20h%20%3D%20%5Cfrac%7B1.5%7D%7B%5Cpi%20r%5E%7B2%7D%7D%20" alt="LaTeX: \displaystyle h = \frac{1.5}{\pi r^{2}} " data-equation-content=" \displaystyle h = \frac{1.5}{\pi r^{2}} " /> Substituting <img class="equation_image" title=" \displaystyle h " src="/equation_images/%20%5Cdisplaystyle%20h%20" alt="LaTeX: \displaystyle h " data-equation-content=" \displaystyle h " /> into <img class="equation_image" title=" \displaystyle f " src="/equation_images/%20%5Cdisplaystyle%20f%20" alt="LaTeX: \displaystyle f " data-equation-content=" \displaystyle f " /> gives <img class="equation_image" title=" \displaystyle f = 2\pi r^2+2\pi r \left( \frac{1.5}{\pi r^2}\right) = 2\pi r^2 + \frac{3.0}{r} " src="/equation_images/%20%5Cdisplaystyle%20f%20%3D%202%5Cpi%20r%5E2%2B2%5Cpi%20r%20%5Cleft%28%20%5Cfrac%7B1.5%7D%7B%5Cpi%20r%5E2%7D%5Cright%29%20%3D%202%5Cpi%20r%5E2%20%2B%20%5Cfrac%7B3.0%7D%7Br%7D%20" alt="LaTeX: \displaystyle f = 2\pi r^2+2\pi r \left( \frac{1.5}{\pi r^2}\right) = 2\pi r^2 + \frac{3.0}{r} " data-equation-content=" \displaystyle f = 2\pi r^2+2\pi r \left( \frac{1.5}{\pi r^2}\right) = 2\pi r^2 + \frac{3.0}{r} " /> . Taking the derivative gives <img class="equation_image" title=" \displaystyle f'(r) = 4 \pi r - \frac{3.0}{r^{2}} " src="/equation_images/%20%5Cdisplaystyle%20f%27%28r%29%20%3D%204%20%5Cpi%20r%20-%20%5Cfrac%7B3.0%7D%7Br%5E%7B2%7D%7D%20" alt="LaTeX: \displaystyle f'(r) = 4 \pi r - \frac{3.0}{r^{2}} " data-equation-content=" \displaystyle f'(r) = 4 \pi r - \frac{3.0}{r^{2}} " /> . Clearing the fractions gives <img class="equation_image" title=" \displaystyle 3.0=4 \pi r^{3} \iff r^3=0.75 \iff r = \frac{\sqrt[3]{0.75}}{\sqrt[3]{\pi}} " src="/equation_images/%20%5Cdisplaystyle%203.0%3D4%20%5Cpi%20r%5E%7B3%7D%20%5Ciff%20r%5E3%3D0.75%20%5Ciff%20r%20%3D%20%5Cfrac%7B%5Csqrt%5B3%5D%7B0.75%7D%7D%7B%5Csqrt%5B3%5D%7B%5Cpi%7D%7D%20" alt="LaTeX: \displaystyle 3.0=4 \pi r^{3} \iff r^3=0.75 \iff r = \frac{\sqrt[3]{0.75}}{\sqrt[3]{\pi}} " data-equation-content=" \displaystyle 3.0=4 \pi r^{3} \iff r^3=0.75 \iff r = \frac{\sqrt[3]{0.75}}{\sqrt[3]{\pi}} " /> Substituing back into the equation for <img class="equation_image" title=" \displaystyle h " src="/equation_images/%20%5Cdisplaystyle%20h%20" alt="LaTeX: \displaystyle h " data-equation-content=" \displaystyle h " /> gives <img class="equation_image" title=" \displaystyle h = \sqrt[3]{\frac{6.0}{\pi}} " src="/equation_images/%20%5Cdisplaystyle%20h%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B6.0%7D%7B%5Cpi%7D%7D%20" alt="LaTeX: \displaystyle h = \sqrt[3]{\frac{6.0}{\pi}} " data-equation-content=" \displaystyle h = \sqrt[3]{\frac{6.0}{\pi}} " /> </p> </p>