\(\text{www.the}\beta\text{etafunction.com}\)
Home
Login
Questions: Algebra BusinessCalculus

Please login to create an exam or a quiz.

Calculus
Applications of Derivatives
New Random

A coffee with temperature \(\displaystyle 169^\circ\) is left in a room with temperature \(\displaystyle 84^\circ\). After 15 minutes the temperature of the coffee is \(\displaystyle 148^\circ\), what is the temperature of the coffee after 21 minutes?


Newton's law of Cooling states that the change in temperature is directly proportional to the difference between the object's temperature and its surroundings. \begin{equation*} \frac{dT}{dt} = k(T(t)-T_{\text{room}})\end{equation*}Using the substitution \(\displaystyle y(t)=T(t)-84\) and calculating the derivative gives \(\displaystyle \frac{dy}{dt}=\frac{dT}{dt}\). Calculating the new initial condition using the point \(\displaystyle (15, 148)\) and the substition gives \(\displaystyle y(0) = T(0)-84 = 85\). The point \(\displaystyle (15, 148)\) must also be transformed to get \(\displaystyle y(15) = T(15)-84 = 148 - 84 = 64\). Substituting both of these into the equation gives the new equaiton \(\displaystyle \frac{dy}{dt}=ky\) which has the solution \(\displaystyle y(t) = y(0)e^{kt}=85e^{kt}\). Evaluating the function at the point gives \(\displaystyle 64=85e^{15k}\) and isolating the exponential gives \(\displaystyle \frac{64}{85}=e^{15k}\). Solving for \(\displaystyle k\) gives \(\displaystyle k=\frac{\ln{\left(\frac{64}{85} \right)}}{15}\). Substuting \(\displaystyle k\) back into the equation gives \(\displaystyle y(t) = 85e^{\frac{\ln{\left(\frac{64}{85} \right)}}{15}t}\) and simplifying gives \(\displaystyle y(t) = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}}\). Substituting out \(\displaystyle y(t)\) gives \begin{equation*}T(t)-84 = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} \implies\, T(t)= 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} + 84 \end{equation*}Using \(\displaystyle t = 21\) gives \(\displaystyle T =85 \left(\frac{64}{85}\right)^{\frac{21}{15}} + 84\approx 141.00^\circ\)

Download \(\LaTeX\)

\begin{question}A coffee with temperature $169^\circ$ is left in a room with temperature $84^\circ$. After 15 minutes the temperature of the coffee is $148^\circ$, what is the temperature of the coffee after 21 minutes?
    \soln{9cm}{Newton's law of Cooling states that the change in temperature is directly proportional to the difference between the object's temperature and its surroundings. \begin{equation*} \frac{dT}{dt} = k(T(t)-T_{\text{room}})\end{equation*}Using the substitution $y(t)=T(t)-84$ and calculating the derivative gives $\frac{dy}{dt}=\frac{dT}{dt}$. Calculating the new initial condition using the point $(15, 148)$ and the substition gives $y(0) = T(0)-84 = 85$. The point $(15, 148)$ must also be transformed to get $y(15) = T(15)-84 = 148 - 84 = 64$. Substituting both of these into the equation gives the new equaiton $\frac{dy}{dt}=ky$ which has the solution $y(t) = y(0)e^{kt}=85e^{kt}$. Evaluating the function at the point gives $64=85e^{15k}$ and isolating the exponential gives $\frac{64}{85}=e^{15k}$. Solving for $k$ gives $k=\frac{\ln{\left(\frac{64}{85} \right)}}{15}$.  Substuting $k$ back into the equation gives $y(t) = 85e^{\frac{\ln{\left(\frac{64}{85} \right)}}{15}t}$ and simplifying gives $y(t) = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}}$. Substituting out $y(t)$ gives 
\begin{equation*}T(t)-84 = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} \implies\, T(t)= 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} + 84 \end{equation*}Using $t = 21$ gives $T =85 \left(\frac{64}{85}\right)^{\frac{21}{15}} + 84\approx 141.00^\circ$}

\end{question}

Download Question and Solution Environment\(\LaTeX\)
\documentclass{article}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage[margin=2cm]{geometry}
\usepackage{tcolorbox}

\newcounter{ExamNumber}
\newcounter{questioncount}
\stepcounter{questioncount}

\newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}}
\renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}}

\newif\ifShowSolution
\newcommand{\soln}[2]{%
\ifShowSolution%
\noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else%
\vspace{#1}%
\fi%
}%
\newcommand{\hideifShowSolution}[1]{%
\ifShowSolution%
%
\else%
#1%
\fi%
}%
\everymath{\displaystyle}
\ShowSolutiontrue

\begin{document}\begin{question}(10pts) The question goes here!
    \soln{9cm}{The solution goes here.}

\end{question}\end{document}
HTML for Canvas
<p> <p>A coffee with temperature  <img class="equation_image" title=" \displaystyle 169^\circ " src="/equation_images/%20%5Cdisplaystyle%20169%5E%5Ccirc%20" alt="LaTeX:  \displaystyle 169^\circ " data-equation-content=" \displaystyle 169^\circ " />  is left in a room with temperature  <img class="equation_image" title=" \displaystyle 84^\circ " src="/equation_images/%20%5Cdisplaystyle%2084%5E%5Ccirc%20" alt="LaTeX:  \displaystyle 84^\circ " data-equation-content=" \displaystyle 84^\circ " /> . After 15 minutes the temperature of the coffee is  <img class="equation_image" title=" \displaystyle 148^\circ " src="/equation_images/%20%5Cdisplaystyle%20148%5E%5Ccirc%20" alt="LaTeX:  \displaystyle 148^\circ " data-equation-content=" \displaystyle 148^\circ " /> , what is the temperature of the coffee after 21 minutes?</p> </p>
HTML for Canvas
<p> <p>Newton's law of Cooling states that the change in temperature is directly proportional to the difference between the object's temperature and its surroundings.  <img class="equation_image" title="  \frac{dT}{dt} = k(T(t)-T_{\text{room}}) " src="/equation_images/%20%20%5Cfrac%7BdT%7D%7Bdt%7D%20%3D%20k%28T%28t%29-T_%7B%5Ctext%7Broom%7D%7D%29%20" alt="LaTeX:   \frac{dT}{dt} = k(T(t)-T_{\text{room}}) " data-equation-content="  \frac{dT}{dt} = k(T(t)-T_{\text{room}}) " /> Using the substitution  <img class="equation_image" title=" \displaystyle y(t)=T(t)-84 " src="/equation_images/%20%5Cdisplaystyle%20y%28t%29%3DT%28t%29-84%20" alt="LaTeX:  \displaystyle y(t)=T(t)-84 " data-equation-content=" \displaystyle y(t)=T(t)-84 " />  and calculating the derivative gives  <img class="equation_image" title=" \displaystyle \frac{dy}{dt}=\frac{dT}{dt} " src="/equation_images/%20%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdt%7D%3D%5Cfrac%7BdT%7D%7Bdt%7D%20" alt="LaTeX:  \displaystyle \frac{dy}{dt}=\frac{dT}{dt} " data-equation-content=" \displaystyle \frac{dy}{dt}=\frac{dT}{dt} " /> . Calculating the new initial condition using the point  <img class="equation_image" title=" \displaystyle (15, 148) " src="/equation_images/%20%5Cdisplaystyle%20%2815%2C%20148%29%20" alt="LaTeX:  \displaystyle (15, 148) " data-equation-content=" \displaystyle (15, 148) " />  and the substition gives  <img class="equation_image" title=" \displaystyle y(0) = T(0)-84 = 85 " src="/equation_images/%20%5Cdisplaystyle%20y%280%29%20%3D%20T%280%29-84%20%3D%2085%20" alt="LaTeX:  \displaystyle y(0) = T(0)-84 = 85 " data-equation-content=" \displaystyle y(0) = T(0)-84 = 85 " /> . The point  <img class="equation_image" title=" \displaystyle (15, 148) " src="/equation_images/%20%5Cdisplaystyle%20%2815%2C%20148%29%20" alt="LaTeX:  \displaystyle (15, 148) " data-equation-content=" \displaystyle (15, 148) " />  must also be transformed to get  <img class="equation_image" title=" \displaystyle y(15) = T(15)-84 = 148 - 84 = 64 " src="/equation_images/%20%5Cdisplaystyle%20y%2815%29%20%3D%20T%2815%29-84%20%3D%20148%20-%2084%20%3D%2064%20" alt="LaTeX:  \displaystyle y(15) = T(15)-84 = 148 - 84 = 64 " data-equation-content=" \displaystyle y(15) = T(15)-84 = 148 - 84 = 64 " /> . Substituting both of these into the equation gives the new equaiton  <img class="equation_image" title=" \displaystyle \frac{dy}{dt}=ky " src="/equation_images/%20%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdt%7D%3Dky%20" alt="LaTeX:  \displaystyle \frac{dy}{dt}=ky " data-equation-content=" \displaystyle \frac{dy}{dt}=ky " />  which has the solution  <img class="equation_image" title=" \displaystyle y(t) = y(0)e^{kt}=85e^{kt} " src="/equation_images/%20%5Cdisplaystyle%20y%28t%29%20%3D%20y%280%29e%5E%7Bkt%7D%3D85e%5E%7Bkt%7D%20" alt="LaTeX:  \displaystyle y(t) = y(0)e^{kt}=85e^{kt} " data-equation-content=" \displaystyle y(t) = y(0)e^{kt}=85e^{kt} " /> . Evaluating the function at the point gives  <img class="equation_image" title=" \displaystyle 64=85e^{15k} " src="/equation_images/%20%5Cdisplaystyle%2064%3D85e%5E%7B15k%7D%20" alt="LaTeX:  \displaystyle 64=85e^{15k} " data-equation-content=" \displaystyle 64=85e^{15k} " />  and isolating the exponential gives  <img class="equation_image" title=" \displaystyle \frac{64}{85}=e^{15k} " src="/equation_images/%20%5Cdisplaystyle%20%5Cfrac%7B64%7D%7B85%7D%3De%5E%7B15k%7D%20" alt="LaTeX:  \displaystyle \frac{64}{85}=e^{15k} " data-equation-content=" \displaystyle \frac{64}{85}=e^{15k} " /> . Solving for  <img class="equation_image" title=" \displaystyle k " src="/equation_images/%20%5Cdisplaystyle%20k%20" alt="LaTeX:  \displaystyle k " data-equation-content=" \displaystyle k " />  gives  <img class="equation_image" title=" \displaystyle k=\frac{\ln{\left(\frac{64}{85} \right)}}{15} " src="/equation_images/%20%5Cdisplaystyle%20k%3D%5Cfrac%7B%5Cln%7B%5Cleft%28%5Cfrac%7B64%7D%7B85%7D%20%5Cright%29%7D%7D%7B15%7D%20" alt="LaTeX:  \displaystyle k=\frac{\ln{\left(\frac{64}{85} \right)}}{15} " data-equation-content=" \displaystyle k=\frac{\ln{\left(\frac{64}{85} \right)}}{15} " /> .  Substuting  <img class="equation_image" title=" \displaystyle k " src="/equation_images/%20%5Cdisplaystyle%20k%20" alt="LaTeX:  \displaystyle k " data-equation-content=" \displaystyle k " />  back into the equation gives  <img class="equation_image" title=" \displaystyle y(t) = 85e^{\frac{\ln{\left(\frac{64}{85} \right)}}{15}t} " src="/equation_images/%20%5Cdisplaystyle%20y%28t%29%20%3D%2085e%5E%7B%5Cfrac%7B%5Cln%7B%5Cleft%28%5Cfrac%7B64%7D%7B85%7D%20%5Cright%29%7D%7D%7B15%7Dt%7D%20" alt="LaTeX:  \displaystyle y(t) = 85e^{\frac{\ln{\left(\frac{64}{85} \right)}}{15}t} " data-equation-content=" \displaystyle y(t) = 85e^{\frac{\ln{\left(\frac{64}{85} \right)}}{15}t} " />  and simplifying gives  <img class="equation_image" title=" \displaystyle y(t) = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} " src="/equation_images/%20%5Cdisplaystyle%20y%28t%29%20%3D%2085%20%5Cleft%28%5Cfrac%7B64%7D%7B85%7D%5Cright%29%5E%7B%5Cfrac%7Bt%7D%7B15%7D%7D%20" alt="LaTeX:  \displaystyle y(t) = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} " data-equation-content=" \displaystyle y(t) = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} " /> . Substituting out  <img class="equation_image" title=" \displaystyle y(t) " src="/equation_images/%20%5Cdisplaystyle%20y%28t%29%20" alt="LaTeX:  \displaystyle y(t) " data-equation-content=" \displaystyle y(t) " />  gives 
 <img class="equation_image" title=" T(t)-84 = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} \implies\, T(t)= 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} + 84  " src="/equation_images/%20T%28t%29-84%20%3D%2085%20%5Cleft%28%5Cfrac%7B64%7D%7B85%7D%5Cright%29%5E%7B%5Cfrac%7Bt%7D%7B15%7D%7D%20%5Cimplies%5C%2C%20T%28t%29%3D%2085%20%5Cleft%28%5Cfrac%7B64%7D%7B85%7D%5Cright%29%5E%7B%5Cfrac%7Bt%7D%7B15%7D%7D%20%2B%2084%20%20" alt="LaTeX:  T(t)-84 = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} \implies\, T(t)= 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} + 84  " data-equation-content=" T(t)-84 = 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} \implies\, T(t)= 85 \left(\frac{64}{85}\right)^{\frac{t}{15}} + 84  " /> Using  <img class="equation_image" title=" \displaystyle t = 21 " src="/equation_images/%20%5Cdisplaystyle%20t%20%3D%2021%20" alt="LaTeX:  \displaystyle t = 21 " data-equation-content=" \displaystyle t = 21 " />  gives  <img class="equation_image" title=" \displaystyle T =85 \left(\frac{64}{85}\right)^{\frac{21}{15}} + 84\approx 141.00^\circ " src="/equation_images/%20%5Cdisplaystyle%20T%20%3D85%20%5Cleft%28%5Cfrac%7B64%7D%7B85%7D%5Cright%29%5E%7B%5Cfrac%7B21%7D%7B15%7D%7D%20%2B%2084%5Capprox%20141.00%5E%5Ccirc%20" alt="LaTeX:  \displaystyle T =85 \left(\frac{64}{85}\right)^{\frac{21}{15}} + 84\approx 141.00^\circ " data-equation-content=" \displaystyle T =85 \left(\frac{64}{85}\right)^{\frac{21}{15}} + 84\approx 141.00^\circ " /> </p> </p>