\(\text{www.the}\beta\text{etafunction.com}\)
Home
Login
Questions: Algebra BusinessCalculus
Please login to create an exam or a quiz.
Find the rational number (fractional) representation of the repeating decimal \(\displaystyle 0.610610610\ldots\)
The first term is \(\displaystyle a_1=0.610=\frac{610}{1000}=\frac{61}{100}\). The length of the repeating block is 3, so the common ratio is \(\displaystyle \frac{1}{1000}\). Using the formula for the sum of an infinite geometric series gives \(\displaystyle S_{\infty}=\frac{a_1}{1-r}=\frac{610}{1-\left(\frac{1}{1000}\right)}=\frac{610}{999}\).
\begin{question}Find the rational number (fractional) representation of the repeating decimal $0.610610610\ldots$ \soln{9cm}{The first term is $a_1=0.610=\frac{610}{1000}=\frac{61}{100}$. The length of the repeating block is 3, so the common ratio is $\frac{1}{1000}$. Using the formula for the sum of an infinite geometric series gives $S_{\infty}=\frac{a_1}{1-r}=\frac{610}{1-\left(\frac{1}{1000}\right)}=\frac{610}{999}$. } \end{question}
\documentclass{article} \usepackage{tikz} \usepackage{amsmath} \usepackage[margin=2cm]{geometry} \usepackage{tcolorbox} \newcounter{ExamNumber} \newcounter{questioncount} \stepcounter{questioncount} \newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}} \renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}} \newif\ifShowSolution \newcommand{\soln}[2]{% \ifShowSolution% \noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else% \vspace{#1}% \fi% }% \newcommand{\hideifShowSolution}[1]{% \ifShowSolution% % \else% #1% \fi% }% \everymath{\displaystyle} \ShowSolutiontrue \begin{document}\begin{question}(10pts) The question goes here! \soln{9cm}{The solution goes here.} \end{question}\end{document}
<p> <p>Find the rational number (fractional) representation of the repeating decimal <img class="equation_image" title=" \displaystyle 0.610610610\ldots " src="/equation_images/%20%5Cdisplaystyle%200.610610610%5Cldots%20" alt="LaTeX: \displaystyle 0.610610610\ldots " data-equation-content=" \displaystyle 0.610610610\ldots " /> </p> </p>
<p> <p>The first term is <img class="equation_image" title=" \displaystyle a_1=0.610=\frac{610}{1000}=\frac{61}{100} " src="/equation_images/%20%5Cdisplaystyle%20a_1%3D0.610%3D%5Cfrac%7B610%7D%7B1000%7D%3D%5Cfrac%7B61%7D%7B100%7D%20" alt="LaTeX: \displaystyle a_1=0.610=\frac{610}{1000}=\frac{61}{100} " data-equation-content=" \displaystyle a_1=0.610=\frac{610}{1000}=\frac{61}{100} " /> . The length of the repeating block is 3, so the common ratio is <img class="equation_image" title=" \displaystyle \frac{1}{1000} " src="/equation_images/%20%5Cdisplaystyle%20%5Cfrac%7B1%7D%7B1000%7D%20" alt="LaTeX: \displaystyle \frac{1}{1000} " data-equation-content=" \displaystyle \frac{1}{1000} " /> . Using the formula for the sum of an infinite geometric series gives <img class="equation_image" title=" \displaystyle S_{\infty}=\frac{a_1}{1-r}=\frac{610}{1-\left(\frac{1}{1000}\right)}=\frac{610}{999} " src="/equation_images/%20%5Cdisplaystyle%20S_%7B%5Cinfty%7D%3D%5Cfrac%7Ba_1%7D%7B1-r%7D%3D%5Cfrac%7B610%7D%7B1-%5Cleft%28%5Cfrac%7B1%7D%7B1000%7D%5Cright%29%7D%3D%5Cfrac%7B610%7D%7B999%7D%20" alt="LaTeX: \displaystyle S_{\infty}=\frac{a_1}{1-r}=\frac{610}{1-\left(\frac{1}{1000}\right)}=\frac{610}{999} " data-equation-content=" \displaystyle S_{\infty}=\frac{a_1}{1-r}=\frac{610}{1-\left(\frac{1}{1000}\right)}=\frac{610}{999} " /> . </p> </p>